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† Department of Mathematics, FNSPE, Czech Technical University CZ-120 00, Prague 2, Czech
Republic
‡ Institute for Theoretical Physics, Kiev 252143, Ukraine

Received 21 January 1999, in final form 26 April 1999

Abstract. An algebra homomorphismψ from theq-deformed algebraUq(iso2) with generating
elementsI , T1, T2 and defining relations [I, T2]q = T1, [T1, I ]q = T2, [T2, T1]q = 0 (where
[A,B]q = q1/2AB−q−1/2BA) to the extension̂Uq(m2)of the Hopf algebraUq(m2) is constructed.
The algebraUq(iso2) atq = 1 leads to the Lie algebra iso2 ∼ m2 of the groupISO(2) of motions of
the Euclidean plane. The Hopf algebraUq(m2) (which is not isomorphic toUq(iso2)) is treated as a
Hopf q-deformation of the universal enveloping algebra of iso2 and is well known in the literature.

Not all irreducible representations ofUq(m2) can be extended to representations of the
extensionÛq (m2). Composing the homomorphismψ with irreducible representations ofÛq (m2)

we obtain representations ofUq(iso2). Not all of these representations ofUq(iso2) are irreducible.
The reducible representations ofUq(iso2) are decomposed into irreducible components. In this
way we obtain all irreducible representations ofUq(iso2) whenq is not a root of unity. A part of
these representations turns into irreducible representations of the Lie algebra iso2 whenq → 1.
Representations of the other part have no classical analogue.

1. Introduction

Soon after the definition of Drinfeld–Jimbo algebrasUq(g), corresponding to semisimple Lie
algebrasg, the Hopf algebraUq(m2) was defined [1] which is treated as aq-deformation
of the universal enveloping algebra of the Lie algebra iso2 of the group of motions of the
Euclidean plane (for the description of this group, its Lie algebra and their representations see,
for example, [2], chapter 4).

However, there is anotherq-deformation of the universal enveloping algebraU(iso2) of
the Lie algebra iso2 which will be denoted byUq(iso2). In the general form (that is, for
U(ison)) suchq-deformations were defined in [3]. The Hopf algebraUq(m2) is related to the
well known quantum algebraUq(sl2), while the associative algebraUq(iso2) is connected with
the non-standardq-deformationUq(so3) of the universal enveloping algebraU(so3) which is
sometimes called the Fairlie algebra.

It is known that the theory of representations of the associative algebraUq(so3) is
richer than that of the algebraUq(sl2) [4–6]. It was shown recently [7] that the theory of
representations of the algebraUq(iso2) is also richer than that of the algebraUq(m2). In
particular, the algebrasUq(so3) andUq(iso2) have irreducible representations of non-classical
type (that is, representations which have no limit atq → 1). The paper [7] is devoted to study
of irreducible∗-representations of the algebraUq(iso2)equipped with∗-structures. Irreducible
representations ofUq(iso2) of the classical type are given in [8].

The aim of the present paper is to study irreducible representations ofUq(iso2) when this
algebra is not equipped with some∗-structure and to clarify why irreducible representations
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of Uq(iso2) of the non-classical type appear. We do this in the same way as in the case of
representations of the algebraUq(so3) in [6]. Namely, we relate the algebraUq(iso2) with the
extensionÛq(m2) of the Hopf algebraUq(m2). This allows us to obtain representations of
Uq(iso2) from those of the extended algebraÛq(m2). We prove that ifq is not a root of unity,
then irreducible representations obtained in this way exhaust, up to equivalence, all irreducible
representations ofUq(iso2).

Note that representations ofUq(iso2) are more complicated than these ofUq(m2) since
the first ones have no lowering and raising operators. For this reason, the representation theory
for Uq(iso2) is more complicated than that forUq(m2).

2. The algebrasUq(iso2) and Ûq(m2)

The algebraUq(iso2) is obtained by aq-deformation of the standard commutation relations

[I, T2] = T1 [T1, I ] = T2 [T2, T1] = 0

of the Lie algebra iso2. So,Uq(iso2) is defined [7, 8] as the complex associative algebra with
unit element generated by the elementsI , T1, T2 satisfying the defining relations

[I, T2]q := q1/2IT2 − q−1/2T2I = T1 (1)

[T1, I ]q := q1/2T1I − q−1/2IT1 = T2 (2)

[T2, T1]q := q1/2T2T1− q−1/2T1T2 = 0. (3)

Note that the elementsT2 andT1 of the algebraUq(iso2) do not commute (as it is a case in the
algebra iso2; these elements correspond to shifts along the axes of the plane). We say that they
q-commute, that is,q1/2T2T1− q−1/2T1T2 = 0. This means that they generate the associative
algebra determining the quantum plane.

Unfortunately, a Hopf algebra structure is not known onUq(iso2). However, it can
be embedded into the Hopf algebraUq(isl2) as a Hopf co-ideal. (The algebraUq(isl2) is
the q-deformation of the universal enveloping algebraU(isl2) of the Lie algebra isl2 of the
inhomogeneous Lie groupISL(2)).

Let us remark that the Hopf algebraUq(m2) is a Hopf dual for the algebra of functions
on the quantum Euclidean groupF(ISOq(2)). The algebras of the typeUq(iso2) appear in
quantum gravity [9].

The relations (1)–(3) lead to the Poincaré–Birkhoff–Witt theorem for the algebraUq(iso2)

which can be formulated as:the elementsT j1 T
k
2 I

l , j, k, l = 0, 1, 2, . . . , form a basis of the
linear spaceUq(iso2).

Indeed, by using the relations (1)–(3) any product of the elementsI , T2, T1 can be reduced
to a sum of the elementsT j1 T

k
2 I

l with complex coefficients. Using the diamond lemma [10]
(or its special case from subsection 4.1.5 in [11]) it is proved that these elements are linearly
independent.

Note that by (1) the elementT1 is not independent: it is determined by the elementsI and
T2. Thus, the algebraUq(iso2) is generated byI andT2, but now instead of quadratic relations
(1)–(3) we must take the relations

I 2T2 − (q + q−1)IT2I + T2I
2 = −T2 (4)

IT 2
2 − (q + q−1)T2IT2 + T 2

2 I = 0 (5)

which are obtained if we substitute expression (1) forT1 into (2) and (3). The equation
q1/2IT2 − q−1/2T2I = T1 and the relations (4) and (5) restore the relations (1)–(3).



Representations of theq-deformed algebraUq(iso2) 4683

Note that relation (5) is a relation of Serre’s type in the definition of quantum algebras
by Drinfeld and Jimbo. Relation (4) differs from Serre’s relation by the appearance of a
non-vanishing right-hand side.

It is known that the elementC = T 2
1 + T 2

2 from the universal enveloping algebraU(iso2)

belongs to the centre of this algebra. The analogue of this element inUq(iso2) is the element
Cq = 1

2(T1T
′
1 + T ′1T1) + 1

2(q + q−1)T 2
2 , whereT ′1 = q−1/2IT2 − q1/2T2I (see [8]), that is

[Cq,X] := CqX −XCq = 0 for allX ∈ Uq(iso2). This element can be reduced to the form

Cq = q−1T 2
1 + qT 2

2 + q−3/2(1− q2)T1T2I. (6)

The algebraUq(iso2) is closely related to (but does not coincide with) the quantum algebra
Uq(m2). The last algebra is generated by the elementsqH , q−H ,E, F satisfying the relations

qHq−H = q−HqH = 1

qHEq−H = qE
qHFq−H = q−1F

[E,F ] := EF − FE = 0.

(7)

In order to relate the algebrasUq(iso2) andUq(m2) we need to extendUq(m2) by the
elements(qkqH + q−kq−H )−1, k ∈ Z, in the sense of [12]. This extension̂Uq(m2) is defined
as the associative algebra (with unit element) generated by the elements

qH q−H E F (qkqH + q−kq−H )−1 k ∈ Z
satisfying the defining relations (7) of the algebraUq(m2) and the following natural relations:

(qkqH + q−kq−H )−1(qkqH + q−kq−H ) = (qkqH + q−kq−H )(qkqH + q−kq−H )−1 = 1 (8)

q±H (qkqH + q−kq−H )−1 = (qkqH + q−kq−H )−1q±H (9)

(qkqH + q−kq−H )−1E = E(qk+1qH + q−k−1q−H )−1 (10)

(qkqH + q−kq−H )−1F = F(qk−1qH + q−k+1q−H )−1. (11)

3. The algebra homomorphismUq(iso2)→ Ûq(m2)

The aim of this section is to give (in an explicit form) the homomorphism of the algebra
Uq(iso2) to Ûq(m2).

Proposition 1. There exists a unique algebra homomorphismψ : Uq(iso2) → Ûq(m2) such
that

ψ(I) = i

q − q−1
(qH − q−H ) (12)

ψ(T2) = (E − F)(qH + q−H )−1 (13)

ψ(T1) = (iqH−1/2E + iq−H−1/2F)(qH + q−H )−1 (14)

whereqH+a := qHqa for a ∈ C.

Proof. In order to prove this proposition we have to show that the defining relations

q1/2ψ(I)ψ(T2)− q−1/2ψ(T2) ψ(I) = ψ(T1)

q1/2ψ(T1) ψ(I)− q−1/2ψ(I)ψ(T1) = ψ(T2) (15)

q1/2ψ(T2) ψ(T1)− q−1/2ψ(T1) ψ(T2) = 0
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of Uq(iso2) are satisfied. Let us prove the relation (15). (Other relations are proved similarly.)
Substituting the expressions (12)–(14) forψ(I), ψ(T2), ψ(T1) into (15) we obtain (after
multiplying both sides of equality by(qH + q−H ) on the right) the relation

q(E − F)EqH (qqH + q−1q−H )−1 + q(E − F)Fq−H (q−1qH + qq−H )−1

−qE2qH (qqH + q−1q−H )−1− q−1FEq−H (qqH + q−1q−H )−1

+q−1EFqH (q−1qH + qq−H )−1 + qF 2q−H (q−1qH + qq−H )−1 = 0.

Equation (15) is true if and only if this relation is correct. We multiply both its sides by
(qqH + q−1q−H )(q−1qH + qq−H ) on the right and obtain a relation which does not depend
on the generators(qkqH + q−kq−H )−1. This relation is easily verified by using the defining
relations (7) of the algebraUq(m2). The proposition is proved. �

Note thatUq(m2) is a Hopf algebra. However, it is not possible to induce a Hopf algebra
structure onUq(iso2) by means of the homomorphismψ since an application of the co-
multiplication1 ofUq(m2) to the elements on the right-hand sides of (12)–(14) gives elements
which cannot be expressed as polynomials ofψ(I), ψ(T2), ψ(T1).

4. Definition of representations ofUq(m2) andUq(iso2)

From this point we assume thatq is not a root of unity. Let us define representations of the
algebrasUq(m2) andUq(iso2).

Definition. By a representationπ of Uq(m2) (respectively,Uq(iso2)) we mean a
homomorphism ofUq(sl2) (respectively,Uq(iso2)) into the algebra of linear operators
(bounded or unbounded) on a Hilbert spaceH, defined on an everywhere dense invariant
subspaceD, such that the operatorπ(qH ) (respectively, the operatorπ(I)) can be
diagonalized, has a discrete spectrum (with finite multiplicities of spectral points ifπ is
irreducible) and its eigenvectors belong toD. Two representationsπ and π ′ of Uq(m2)

(of Uq(iso2)) on spacesH andH′, respectively, are called (algebraically) equivalent if there
exist everywhere dense invariant subspacesV ⊂ H andV ′ ⊂ H′ and a one-to-one linear
operatorA : V → V ′ such thatAπ(a)v = π ′(a)Av for all a ∈ Uq(m2) (respectively, for all
a ∈ Uq(iso2)) andv ∈ V .

Remark. Note that the elementI ∈ Uq(iso2) corresponds to the homogeneous part of the
motion groupISO(2). As in the classical case, it is natural to demand in the definition
of representations ofUq(iso2) that the operatorπ(I) has a discrete spectrum (with finite
multiplicities of spectral points for irreducible representationsπ ). Such representations
correspond to Harish–Chandra modules of Lie algebras. Note that irreducible∗-representations
ofUq(iso2)without a requirement thatπ(I) has a discrete spectrum were studied in [7]. It was
shown there that the classification of irreducible∗-representations by self-adjoint operators
in this case is equivalent to the classification of arbitrary families of bounded self-adjoint
operators. The classification of irreducible representations (not obligatory∗-representations)
in this case turn into an unsolved problem.

The algebraUq(m2) has the following non-trivial irreducible representations:

(a) one-dimensional representationsπσ , σ ∈ C, σ 6= 0, determined by the formulae
πσ (q

H ) = σ , πσ (E) = πσ (F ) = 0;
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(b) infinite-dimensional representationsπrs , r, s ∈ C, r, s 6= 0, acting on the Hilbert spaceH
with a basis|m〉,m ∈ Z, by the formulae

πrs(q
H )|m〉 = sqm|m〉 πrs(E)|m〉 = r|m + 1〉

πrs(F )|m〉 = r|m− 1〉 m ∈ Z.
(16)

We takeD = lin{|m〉|m ∈ Z}. A direct verification shows that the representationsπrs
andπr ′s ′ (r, s, r ′, s ′ ∈ C\{0}) are equivalent if and only ifr = ±r ′ ands ′ = qns for some
n ∈ Z.

Repeating the reasoning of section 5.2 from the book [11] we easily prove thatevery
irreducible representation ofUq(m2) is equivalent to one of the representations(16)or is one
dimensional.

Note that at first glance it seems that there exist infinite-dimensional irreducible
representations ofUq(m2)not equivalent to the representations (16). For example, the formulae
π(qH )|m〉 = sqm|m〉, π(E)|m〉 = r|m + 1〉, π(F )|m〉 = t |m − 1〉 also give a representation
of Uq(m2). However, we make a rescaling of the basis elements by setting|m〉 = am|m〉′ and
obtainπ(E)|m〉′ = ar|m + 1〉′ andπ(F )|m〉′ = a−1t |m− 1〉′. Settinga2 = t/r, we have the
representationπ in the form (16) withr replaced by

√
rt .

Note that forq → 1 the representationsπrs ofUq(m2) turn into irreducible representations
of the universal enveloping algebraU(m2), that is, all irreducible representations ofUq(m2)

are deformations of the corresponding irreducible representations ofU(m2).
We try to extend representationsπr,s ofUq(m2) to representations of the extensionÛq(m2)

by using the relation

π((qkqH + q−kq−H )−1) := (qkπ(qH ) + q−kπ(q−H ))−1 k ∈ Z. (17)

Clearly, only those irreducible representationsπr,s of Uq(m2) can be extended tôUq(m2) for
which the operatorsqkπ(qH ) + q−kπ(q−H ) are invertible. From formulae (16) it is clear that
these operators are always invertible for the representationsπrs , s 6= ±iqn, n ∈ Z. (For the
representationsπrs , s = ±iqn for somen ∈ Z, some of these operators are not invertible since
they have zero eigenvalue.) Denoting the extended representations by the same symbolsπrs ,
we can formulate the following statement:

The algebraÛq(m2) has the infinite-dimensional representationsπrs , r, s ∈ C\{0},
s 6= ±iqn for all n ∈ Z, given by the relations (16) and (17). The representations
πrs andπr ′,s ′ (r, s, r ′, s ′ ∈ C\{0}, s, s ′ 6= ±iqn for all n ∈ Z) are equivalent if and
only if r = ±r ′ ands ′ = qms for somem ∈ Z. Any irreducible representation of
Ûq(sl2) is equivalent to the representationπr,s for somer, s or is a one-dimensional
representation.

5. Irreducible representations ofUq(iso2)

If π is a representation of the algebraÛq(m2)on a spaceH, then the mappingR : Uq(iso2)→ H
defined as the compositionR = π ◦ψ , whereψ is the homomorphism from proposition 1, is
a (not necessary irreducible) representation ofUq(iso2).

Let us consider the representations

Rrs = πrs ◦ ψ
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ofUq(iso2), whereπrs are the irreducible representations ofÛq(m2) from the previous section.
Using formulae (16) and (12)–(14) we find that

Rrs(I )|m〉 = i
sqm − s−1q−m

q − q−1
|m〉 (18)

Rrs(T2)|m〉 = r

sqm + s−1q−m
{|m + 1〉 − |m− 1〉} (19)

Rrs(T1)|m〉 = iq1/2r

sqm + s−1q−m
{sqm|m + 1〉 + q−ms−1|m− 1〉}. (20)

We consider that these operators are defined on the invariant subspaceD ⊂ Hwhich is the span
of the basis vectors|m〉. Thus we proved the following assertion:let r, s ∈ C\{0}, s 6= ±iqn

for all n ∈ Z. Then formulae (18)–(20) give a representationRrs of the algebraUq(iso2).
The equivalence relations for the above representations of the algebraÛq(m2) lead to the

corresponding equivalence relations for the representationsRrs .

Proposition 2. The representationsRrs ofUq(iso2) are irreducible ifs 6= ± iqm+1/2,m ∈ Z.

Proof. Let {a} := (sqa−s−1q−a)/(q−q−1). To prove this proposition we first note that since
q is not a root of unity ands 6= ±iqm+1/2,m ∈ Z, the eigenvalues i{m},m = 0,±1,±2, . . . ,
of the operatorRrs(I ) are pairwise different.

Let V ⊂ D be an invariant subspace of the representationRrs . We need to show that
V = D. Let v = ∑

mi
αi |mi〉 ∈ V , where|mi〉 are eigenvectors ofRrs(I ) which are basis

vectors ofH. (Note that the sum is finite sincev ∈ D.) Let us prove that|mi〉 ∈ V . We prove
this for the case whenv = α1|m1〉 + α2|m2〉. (The case of a greater number of summands is
proved similarly.) We have

v′ := Rrs(I )v = iα1{m1}|m1〉 + iα2{m2}|m2〉.
Sincev, v′ ∈ V , one derives that

i{m1}v − v′ = iα2({m1} − {m2})|m2〉 ∈ V.
Since{m1} 6= {m2}, then|m2〉 ∈ V and hence|m1〉 ∈ V .

In order to prove thatV = D we obtain from (19) and (20) that

{Rrs(T1)− isqm2+1/2Rrs(T2)}|m2〉 = irq1/2|m2 − 1〉
{Rrs(T1) + is−1q−m2+1/2Rrs(T2)}|m2〉 = irq1/2|m2 + 1〉.

It follows from these relations thatV contains the vectors|m2−1〉, |m2−2〉, . . . and the vectors
|m2 + 1〉, |m2 + 2〉, . . . . This means thatV = D and the representationRrs is irreducible. The
proposition is proved. �

Note that the representationsRrs of proposition 2 turn into irreducible representations
of the universal enveloping algebraU(iso2) whenq → 1. For this reason, they are called
representations of the classical type.

It is easy to show that the representationsRrs andRr ′s ′ of proposition 2 are equivalent if
and only ifr ′ = ±r ands = qms for somem ∈ Z.

Now let us show that ifr ∈ C\{0} ands = εiqm+1/2, wherem ∈ Z andε ∈ {1,−1}, then
the representationRrs is reducible.

For this we note that the eigenvalues of the operatorRrs(I ) are

−ε q
n + q−n

q − q−1
n = ± 1

2,± 3
2,± 5

2, . . .
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that is, every spectral point has multiplicity 2. The pairs of vectors|−m+j〉 and|−m−j−1〉,
j = 0, 1, 2, . . . , are of the same eigenvalue. Let us define two subspacesV1 andV−1 by the
formulaeVε̃ := lin{|j〉ε̃|j = 0, 1, 2, . . .}, where

|j〉ε̃ := |−m + j〉 + ε̃i(−1)j |−m− j − 1〉 j = 0, 1, 2, . . . . (21)

A direct calculation shows that forε̃ = 1 and forε̃ = −1 we have

Rrs(I )|j〉ε̃ = −ε q
j+1/2 + q−j−1/2

q − q−1
|j〉ε̃ j = 0, 1, 2, . . . (22)

Rrs(T2)|0〉ε̃ = − r

q1/2 − q−1/2

(
ε̃|0〉ε̃ + i|1〉ε̃

)
(23)

Rrs(T2)|j〉ε̃ = −ε ir

qj+1/2 − q−j−1/2

(|j + 1〉ε̃ + |j − 1〉ε̃
)

j = 1, 2, 3, . . . (24)

Rrs(T1)|0〉ε̃ = r

q1/2 − q−1/2

(
ε̃|0〉ε̃ + iq|1〉ε̃

)
(25)

Rrs(T1)|j〉ε̃ = ir

qj+1/2 − q−j−1/2

(
qj+1|j + 1〉ε̃ + q−j |j − 1〉ε̃

)
j = 1, 2, 3, . . . . (26)

These formulae show that the subspacesV1 and V−1 are invariant with respect to the
representationRrs , that is, this representation is reducible.

Let us denote the restrictions of the considered above reducible representationRrs to the
invariant subspacesV1 andV−1 byRε,1r andRε,−1

r , respectively. It is seen from formulae (22)–
(26) that the operators are independent ofs (this is a consequence of the equalitys = εiqm+1/2,
m ∈ Z, and the equivalence relations for the representationsRrs) and the indexs is omitted.
These formulae show thatRrs , s = εiqm+1/2, is the direct sum of the representationsRε,1r and
Rε,−1
r .

Using formulae (22)–(26) it is easy to prove that the representationsRε,ε̃r andRε
′,ε̃′
r ′ are

equivalent if(r, ε, ε̃) = (−r ′, ε′,−ε̃′).
Theorem 1. Let r and r ′ be non-zero complex numbers such thatRer > 0 and Rer ′ > 0,
and letε, ε̃, ε′, ε̃′ ∈ {1,−1}. If (ε, ε̃, r) 6= (ε′, ε̃′, r ′), then the representationsRε,ε̃r andRε

′,ε̃′
r ′

are irreducible and non-equivalent. Letr ∈ C\{0}, ε, ε̃ ∈ {1,−1}, and letr ′, s ′ ∈ C\{0},
s ′ 6= ±iqm+1/2 for all m ∈ Z. Then the irreducible representationsRε,ε̃r andRr ′s ′ are non-
equivalent.

Proof. The irreducibility is proved in the same way as in proposition 2. In order to prove a
non-equivalence we note that the spectrum of the operatorR(I) for any of the representations
R+,+
r , R+,−

r , Rer > 0, does not coincide with that of any of the representationsR−,+r , R−,−r ,
Rer > 0. Therefore, any of the representationsR+,+

r , R+,−
r , Rer > 0, cannot be equivalent to

some of the representationsR−,+r , R−,−r , Rer > 0.
The operatorsRε,ε̃r (T2), ε, ε̃ = +,−, are trace class operators. Their traces are non-zero

(there exists only one non-zero diagonal matrix element with respect to the basis (21)). Since
for Rer > 0 and Rer ′ > 0, r 6= r ′, we have TrR+,+

r (T2) 6= TrR+,−
r ′ (T2), then any of the

representationsR+,+
r , Rer > 0, cannot be equivalent to some of the representationsR+,−

r ,
Rer > 0. It is proved similarly that any of the representationsR−,+r , Rer > 0, cannot be
equivalent to some of the representationsR

−,−
r ′ , Rer ′ > 0. This proves the first part of the

proposition. The second part is proved similarly. �

RepresentationsRε,ε̃r from theorem 1 have no classical limit since atq → 1 the
denominators in (22)–(26) turn into zero. For this reason, these representations are called
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representations of non-classical type. There are no analogues of such representations for the
Lie algebra iso2.

Theorem 2. Every irreducible representation ofUq(iso2) is equivalent to one of the
representationsRrs and Rε,ε̃r or is one dimensional. This means that the representations
Rrs andRε,ε̃r ′ , r, s, r ′ ∈ C\{0}, ε, ε̃ ∈ {1,−1} defined by the relations (18)–(20) and (22)–(26),
respectively, exhaust (up to equivalence) all irreducible representations ofUq(iso2).

Proof. LetR be an irreducible representation ofUq(iso2). Then it follows from the definition
of representations thatR(I) has some eigenvector|0〉. Thus there existss ∈ C, s 6= 0, such
that

R(I)|0〉 = i[0] q,s |0〉
where [m]q,s := (sqm − s−1q−m)/(q − q−1). SinceR is irreducible there exists a complex
numberC such thatR(Cq) = C (see equation (6)). We define recursively the vectors

|j + 1〉 := R(iT1− s−1q−j+1/2T2)|j〉 j = 0, 1, 2, . . . (27)

|j − 1〉 := R(iT1 + sqj+1/2T2)|j〉 j = 0,−1,−2, . . . . (28)

Some of these vectors may be linearly dependent or equal to 0. It follows from (1)–(3) and (6)
that

R(I)|j〉 = i[j ]q,s |j〉 j ∈ Z (29)

R(iT1 + sqj+3/2T2)|j + 1〉 = −Cq|j〉 j = 0, 1, 2, . . . (30)

R(iT1− s−1q−j+3/2T2)|j − 1〉 = −Cq|j〉 j = 0,−1,−2, . . . . (31)

As a sample, we prove the relation (30) forj > 0:

R(iT1 + sqj+3/2T2)|j + 1〉 = R(iT1 + sqj+3/2T2)R(iT1− s−1q−j+1/2T2)|j〉
= R(−T 2

1 + isqj+3/2T2T1− is−1q−j+1/2T1T2 − q2T 2
2 )|j〉

= qR(−q−1T 2
1 − qT 2

2 + isqj−3/2T1T2 − is−1q−j−1/2T1T2)|j〉
= qR(−q−1T 2

1 − qT 2
2 − q−3/2(1− q2)T1T2I )|j〉

= −qR(Cq)|j〉 = −qC|j〉.
We obtain from (27) and (30) that

R(T2)|j〉 = −(s−1q−j+1/2 + sqj+1/2)−1(|j + 1〉 +Cq|j − 1〉) (32)

iR(T1)|j〉 = sqj+1/2

s−1q−j+1/2 + sqj+1/2
|j + 1〉 +Cq

(
sqj+1/2

s−1q−j+1/2 + sqj+1/2

)
|j − 1〉. (33)

Let us now consider two cases: (a)C = 0 and (b)C 6= 0.
(a)C = 0. Formulae (32) and (33) in this case give

R(T2)|j〉 = −(s−1q−j+1/2 + sqj+1/2)−1|j + 1〉 (34)

iR(T1)|j〉 = sqj+1/2

s−1q−j+1/2 + sqj+1/2
|j + 1〉. (35)

If the set{|j〉|j = 0, 1, 2, . . .} is linearly independent, it follows from (34) and (35) that
lin{|j〉, |j + 1〉, . . .} is an invariant subspace for anyj = 1, 2, 3, . . . . Thus the representation
is either reducible or one dimensional.

Now let there existl ∈ N such that|l〉 is linearly dependent on linearly independent vectors
|0〉, |1〉, . . . , |l−1〉. Since the sequence of numbers [j ]q,s , j ∈ Z, does not contain three equal
elements, the only possible case is|l〉 = α|k〉 for somek ∈ {0, 1, . . . , l − 1}.
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Let us consider the case−sql−1 6= ±i. For α 6= 0 we find contradiction with the
commutation relations (1)–(3) applying them to the vector|l − 1〉. Forα = 0 andl > 2 we
obtain the one-dimensional representation on the invariant subspaceC|l − 1〉. Forα = 0 and
l = 1 we must move attention to the vectors|0〉, |−1〉, . . . and the rest of the proof is fulfilled
by repeating the above and below arguments except that we work with vectors with negative
indices.

Now let us consider the case−sql−1 = εi, ε = ±1. Sincesql−1 = −s−1q−l+1, the
equalities (34) and (35) have no sense in this case.

Forα 6= 0 we find from equation [l − 1 + j ]q,s = [l − 1− j ]q,s (valid for all j ∈ Z) that
k = l − 2. By (27), (30) and the relationsql−1 = −s−1q−l+1 we have

|l〉 = R(iT1− s−1q−l+3/2T2)|l − 1〉 = α|k〉 = αR(iT1 + sql−1/2T2)|l − 1〉 = 0.

This contradicts the equality|l〉 = α|k〉, α 6= 0. Forα = 0 we have from (1) and from
R(iT1− εiq1/2T2)|l − 1〉 = 0 that

R(I)R(T2)|l − 1〉 = ε q
2 + 1

q2 − 1
R(T2)|l − 1〉 = i[ l]q,sR(T2)|l − 1〉

and we can redefine|l〉 := R(T2)|l−1〉. From (3) and (30) we have 0= R(iT1 +sql+1/2T2)|l〉.
If |l〉 is linearly dependent on|0〉, |1〉, . . . , |l − 1〉, there existsβ ∈ C such that

|l〉 = β|l − 2〉. As above, forβ 6= 0 we find the contradictionβ|l − 1〉 = 0 and for
β = 0 we obtain a one-dimensional representation sinceC|l − 1〉 is an invariant subspace.

If |l〉 is linearly independent on the vectors|0〉, |1〉, . . . , |l − 1〉, we recursively redefine
|j + 1〉 := R(iT1− s−1q−j+1/2T2)|j〉, j = l, l + 1, . . . . Then we again consider two cases.

• If there existsγ ∈ C such that|l + l′〉 = γ |l− 2− l′〉 for somel′ ∈ {1, 2, . . . , l− 2}, then
we obtain either a one-dimensional representation on the invariant subspaceC|l + l′ − 1〉
(whenγ = 0) or a contradiction applying (1)–(3) to|l − 2− l′〉.
• If |l + l′〉 is linearly independent on|0〉, |1〉, . . . , |l + l′ − 1〉, then the representation is

reducible since lin{|j〉, |j + 1〉, . . .} is invariant subspace for anyj .

(b) C 6= 0. Consider first the case when|l〉 is linearly dependent on the linearly
independent vectors|0〉, |1〉, . . . , |l−1〉. It means that|l〉 = α|k〉 for somek ∈ {0, 1, . . . , l−1}
and forα ∈ C. If α = 0 we find a contradiction since

0= |l〉 = R(iT1− s−1q−l+3/2T2)|l − 1〉 = R(iT1 + sql+1/2T2)|l〉 = −Cq|l − 1〉
impliesC = 0. Forα 6= 0 we find a contradiction by applying (1)–(3) to the vector|l − 1〉.

Now consider the case when the vectors|j〉, j = 0, 1, 2, . . . , are linearly independent. If
there existsm ∈ N such that the vector|−m〉 is linearly dependent on the linearly independent
vectors|j〉, j ∈ {−m + 1,−m + 2, . . .}, we write|−m〉 = β|p〉 for someβ ∈ C andp > −m.
Forβ = 0 we find a contradiction similarly as in the above analogous cases. Forβ = Cq and
p = −m + 1 we obtain the representation given (after some suitable rescaling of the basis) by
(22)–(26). Forβ = −Cq andp = −m + 2 we can derive from (1) how operatorR(I) acts on
the linearly independent vectors|p〉 andR(T2)|p − 1〉 and see that it cannot be diagonalized
on this subspace. Therefore, this case is impossible. For other values ofβ andp we find a
contradiction by applying (1)–(3) to|−m + 1〉.

Thus the only possible remaining case is when all the vectors|j〉, j ∈ Z are linearly
independent. Using the formulae (29), (32) and (33), in this case we obtain (after some
suitable rescaling of the basis) the representation (18)–(20). The theorem is proved.�

It is clear from theorem 2 that forq ∈ R the irreducible∗-representations ofUq(iso2)

which can be separated from representations of theorem 1, are equivalent to the irreducible
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∗-representations from [7]. However, it is not seen directly from formulae for representations
since operators of representations in [7] are given with respect to a basis other than our one.
Namely, the authors of [7] diagonalize the operatorR(T2) which corresponds to the shifts in
the groupISO(2).
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